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ABSTRACT 

The aim of this study was to compare biochemical traits of two rice leaf positions in induced 

resistance by 1,2-Benzisothiazol-3 (2H)-one 1,1-dioxide (BIT) at a concentration of 2 mM 

against leaf blight in rice plants. The results showed that BIT-induced rice leaves had many 

intense peaks which represented defensive carbohydrates, proteins and lipids. At leaves above 

the inoculated leaf, exogenous BIT treatment had higher peaks of lipids and proteins, such as 

2920, 2851, 1736 cm-1, and the structural change of amide I from alpha helix type at the peak of 

1655 cm-1 to β-sheet type at 1636 cm-1. At rice leaves below the inoculated leaf, its Fourier 

transform infrared peak assignments of the BIT-induced treatment had significantly spectral 

peaks at some vibrational peaks of lipids and carbohydrates, such as 2920, 2851, 1319, 1103 and 

1040 cm-1. In this study, the elicitor of BIT reduced leaf blight severity by approximately 

34.82%. 

Keywords: bacterial leaf blight, elicitor, induced resistance, rice. 

1. INTRODUCTION 

Rice (Oryza sativa L.) is the major food at the world, providing food safety and livelihoods for 

billions of people [1] [2]. Rice plays an important role on nutrition and health implication [3]. 

Rice leaf blight (LB) disease caused by Xanthomonas oryzae pv. oryzae (Xoo) was the most 

frequently disease at fields in Asia and West Africa [4] [5]. In India, Indonesia, Japan and the 

Philippines, LB damage was reported to a range of 20-30% and can reach 75%, depending on 

locations, rice varieties and environmental conditions [6] [7] [8]. In Africa countries, yield losses 

caused by Xoo was estimated approximately 30-50% [9]. The severity of LB losses required the 

development of eco-friendly and cost-effective strategies for managing. Management of LB is 

mainly focused on methods of using agro-chemicals, resistant varieties and systemic acquired 

resistance (SAR) to reduce the initial inoculum and enhance plant health [10] [11]. The SAR, 
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based on the increased expression of genes in the host plants, could elicit natural defense 

mechanisms in rice. The induced plants is able to resist an attack of virulent pathogens by 

enhancing an array of rapidly expressed defenses upon infection [12]. Induction of disease 

resistance could be resulted from biotic and abiotic elicitors [13] [14] [15]. In Arabidopsis, foliar 

sprays of 2 mM 1,2-Benzisothiazol-3 (2H)-one 1,1-dioxide (BIT), could induce an accumulation 

of salicylic acid (SA) by stimulating the SAR pathway. Levels of free and total SA in the BIT-

treated Arabidopsis were approximately 7- and 5-fold greater, respectively, at 5 days after 

treatment [16]. The treatments of 10 and 20 mM salicylic acid, 0.5 and 2 mM jasmonic acid had 

played a role in reducing bacterial disease caused by Acidovorax avenae in creeping bentgrass 

(Agrostis stolonifera) [17]. Saccharin could induce SAR responses of soybean (Glycine max) 

against the infection of rust fungus Phakopsora pachyrhizi [18]. Similarly, saccharin at a 

spraying concentration of 0.24 mg mL-1 could protect bean plants (Phaseolus vulgaris) against 

rust and angular leaf spot [19]. An elicitor of acibenzolar-S-methyl highly controlled tobacco 

blue mould [20], could reduce basil downy mildew at approximately 47-94% in disease severity 

[21]. 

Protection of rice plants from a bacteria's initial penetration is achieved via passive defenses, 

such as physical and/or chemical barriers such as plant cuticle, cell walls, phenolic compounds, 

quinones, tannins. When the bacterial pathogens can pass these host passive barriers, the rice 

plants continue to generate secondary active defenses, including cell wall appositions, callose 

deposits, lignification, phytoalexins, hypersensitive response, and pathogenesis-related proteins 

[4]. These active defenses in induced rice plants happen faster than in non-induced ones.  

Fourier transform infrared (FTIR) spectroscopy is a fingerprinting tool to differentiate plant 

metabolic status. The FTIR technique can be used with several different approaches such as 

hierarchical cluster analysis, principal component analysis and genetic algorithms to detect 

spectra and formulate possible explanation based on the metabolic differences among elicitor-

treated and control treatments [22] [23].  

The aim of this study was to compare alterations in cell walls of two rice leaf positions occurred 

during the process of BIT-induced resistance against leaf blight disease. 

2. MATERIALS AND METHODS 

The experiments were carried out at the laboratory and net house of Institute of Agricultural 

Technology, Suranaree University of Technology and the IR-laboratory of Synchrotron Light 

Research Institute, Thailand. 

2.1 Rice variety and resistance elicitor  

Seeds of a susceptible rice variety, KDML105, was supported by Rice Research Center, 

Thailand. Resistance elicitor of BIT, a metabolite of probenazole, was gifted by Prof. Hideo 

Nakashita, Fukui Prefectural University, Japan. 

2.2 Bacterial strain and culture condition 

Aggressive strain of Xoo was obtained from Plant Pathology and Biopesticide Laboratory, 

Suranaree University of Technology, Thailand. The Xoo was cultured into 300 ml of nutrient 
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broth at 27±2°C for 72 h, with 180 rpm shaking. Finally, the culture medium was re-suspended 

in sterile distilled water (DW). The density of the bacterial suspension was determined at 108 cfu 

mL-1 based on optical density of 0.2 at 600 nm [24]. 

2.3 Rice cultivation, induction treatment, disease assessment and sample preparation 

The experiment was conducted with completely randomized design (CRD), five replicates. Rice 

seeds cv. KDML105 were surface-disinfected by a treatment with 90% ethanol (v/v) for three 

min. Next, 50 g of rice seeds were soaked thoroughly with 100 ml of the solution of BIT at a 

concentration of 2 mM, incubated on wet papers in the dark conditions for one day. Rice seeds 

treated were planted in 35 cm-plastic pots containing soil, at a net house with a natural light 

regime (27°C and 70-80% relative humidity). There were two pots per one replication, with two 

seeds planted per one pot. The rice plants were further treated by foliar sprays with the solution 

of 2 mM BIT until it ran off, at 15, 30 and 45 days after planting (DAP). On an untreated control, 

the rice seeds and plants were prepared identically, but DW was used. At each rice pot, tip of six 

matured leaves of fifty-day-old plants were randomly chosen, cut and dipped into a Xoo 

suspension at a density of 1x108 cfu mL−1 [25] [26].  Following the artificial inoculation, the 

plants were put in an inoculation room at the dark conditions with relative humidity of 

approximately 95% at 250C for one day. The plants were then kept in the net house with a 

natural light regime.  

LB disease scores were assessed at 7, 14 and 21 days after inoculation (DAI), using a disease 

scale for assessing rice LB under net house conditions [27]. Disease severity (DS) was calculated 

as DS (%) = [Sum of all numerical ratings / (Total number of leaves graded x Maximum scale)] 

x 100%. Reduction of DS (RDS) for BIT-treated treatment was calculated using a formula as 

follows: RDS (%) = [(DS of control – DS of BIT-treatment) / DS of control] x 100%.   

Above or below leaf (Figure 1) were sampled at 7 DAI, put into an oven at 60oC for 

approximately 3 days, then ground into fine powder by pestles and mortars. Equal weights of 

powder samples were taken and analyzed by FTIR spectroscopy. 
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Figure 1: The experimental procedure. Seed soak and foliar sprays with BIT at a 

concentration of 2mM on rice cv. KDML105 grown under nethouse conditions at 0, 15, 30 

and 45 days after planting (DAP). On the untreated control, the rice seeds and plants were 

handed identically, but distilled water was used instead of BIT. Rice plants were inoculated 

with Xanthomonas oryzae pv. oryzae (Xoo) at 50 DAP. Two positions of leaves including 

above leaf and below leaf were collected at 7 days after Xoo-inoculation. 

2.4 Analysis of FTIR spectra 

The spectra were measured by using FTIR spectroscope (Bruker Optics Ltd., Ettlingen, 

Germany). FTIR spectroscopy in the mid infrared (IR) region of 4000-900 cm-1 at a spectral 

resolution of 4 cm-1, with 18 spectra per one sample, at Synchrotron Light Research Institute, 

Thailand [28] [29]. 

The analytical procedure consisted in calculating the differences in the IR spectra by using 

OPUS 6.5 software (Bruker optic, German). The individual spectrum from each group was 

converted to the second derivative, employing nine smoothing points by Savitzky-Golay method 

and vector normalized by the Extended Multiplicative Signal Correction, to normalize effect of 

different thickness of the rice leaf powder samples. Unsupervised Hierarchical Cluster Analysis 

was carried out on IR data using Ward’s algorithm to characterize the various biochemical 

components of the rice leaf tissues over spectral ranges of 3000-2800 cm-1 and 1800-900 cm-1. 

Peak positions were determined using second derivation [28] [30].  

2.5 Statistical analysis  

Treatment means were separated by Duncan’s Multiple Range Test using SPSS software, version 

16 (SPSS, Chicago, IL). Significance was determined by the magnitude of F-value at p = 0.05. 

All experiments in the research were repeated three times, with similar results in all replicates. 

3. RESULTS AND DISCUSSION 
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The elicitor BIT at a concentration of 2 mM was assessed for its efficacy on SAR by seed soak 

and foliar sprays at 15, 30 and 45 DAP. The results indicated that the treatment of 2 mM BIT 

importantly decreased the DS of LB at three observing time points, confirming that the efficacy 

of BIT on SAR was happened. The DS of BIT-treated rice plants were approximately 19.52, 

27.62 and 34.76% at 7, 14 and 21 DAI, respectively, significantly lower than those of the control 

one which were 27.14, 37.62 and 53.33%. Reduction of DS in the treatment of 2 mM BIT was 

approximately 34.82% at 21 DAI (Table 1). 

Table 1: Efficacy of BIT at a concentration of 2mM on severity and reduction of BLB 

disease in rice cv. KDML 105 caused by Xanthomonas oryzae pv. oryzae under net house 

conditions 

Treatment Disease severity1/ (%) Reduction of disease 

severity compared with 

control (%) 

7 DAI 2/ 14 DAI 2/ 21 DAI 2/ 7 DAI 
2/ 

14 DAI 
2/ 

21 DAI 
2/ 

BIT-treated  19.52±3.9

1b 

27.62±2.1

3b 

34.76±2.1

2b 28.08 26.58 34.82 

Non-treated control 27.14±2.7

1a 

37.62±6.1

6a 

53.33±5.7

3a 

   

Significance ** ** **    

Coefficient of 

Variation (%) 

5.12 6.83 10.60    

Rice plants were treated by seed soak and foliar spays at 15, 30 and 45 days after 

planting (DAP), with 2 mM BIT or distilled water as a control, and then inoculated with 

Xanthomonas oryzae pv. oryzae suspension at a density of 1x108 cfu ml-1 at 50 DAS. The 

data were means ± S.E. with five replications, two rice plants per one replication, three 

leaves per one rice plant. BIT-treated: susceptible rice cultivar cv. KDML105 treated 

with BIT at a concentration of 2 mM; Non-treated control: susceptible rice cultivar cv. 

KDML105 treated with distilled water. 

1/ Mean ± SE (standard error) followed by the same letter do not differ significantly 

according to Duncan’s multiple range test at P = 0.05 

2/ DAI: Days after inoculation 

In order to compare the effect of elicitor BIT on the systemic defense responses of two rice leaf 

positions, the biochemical alterations of rice leaves were characterized by FTIR spectroscopy 

analysis. Original and second derivative average spectra of rice leaves of BIT-induced treatment 

and diseased control in the range of 3000-2800 and 1800-900 cm-1, were shown in Fig. 2 and 3. 
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Biochemical roles of specific spectral peaks were described in several papers of bio-researches, 

but the study of FTIR on induced resistance is not much (Table 2). The spectral range of 3000-

2800 cm-1 was shown in Fig. 3a and 3c. The broad bands at the peaks of 2920 and 2851 cm-1, 

both belong to C–H asymmetric and symmetric vibration, were more intense in treatment of BIT. 

The differences on spectral ranges of 1800-900 cm-1 of non-treated and BIT-treated leaves are 

shown in Fig. 3b and 3d. At above rice leaves, the BIT-treated treatment had one importantly 

higher peak at 1736 cm-1, assigned to stretching vibration of C=O ester. Moreover, alpha helix 

form (1655 cm-1) of amide I in BIT-treated rice leaves appeared more intense than β-sheet one 

(1636 cm-1). However, the alpha helix peak greatly remained in the control (Fig. 3b). At below 

rice leaves, their FTIR peak assignments of the BIT-induced treatment had three importantly 

higher vibrational peaks, including 1319 cm-1 (assigned to C-C, C-O skeletal of hemicellulose 

and lignin), 1103 cm-1 (C-O-C glycoside of hemicellulose) and 1040 cm-1 (C-O-C of 

polysaccharides) (Fig. 3d). One of the most important characteristics of induced resistance is 

systemic. After the first infection from Xoo, induced rice plants could create signals and defense 

responses at other parts of plants, both above and below rice leaves. The interesting questions 

remain to be explored are which leaf position has more biochemical defense responses in and 

what defense responses at each leaf position. The results showed that above leaves have 

increased defense responses on lipids and protein, while below leaves have more significant 

alterations on lipids and carbohydrates.   

Table 2: Band assignments of FTIR vibration peak (cm-1) of plant rice leaf tissues based on 

references 

Peak name Spectral 

ranges 

Vibration peak assignments References 

C-H 

stretching 

vibration 

3000-

2800 

C-H Asymmetric and 

Symmetric stretching 

vibration of mainly lipid 

groups with the little 

contribution from protein,  

[31] [32] [33] 

C=O esters 1740-

1700 

Stretching vibration of C=O 

ester of bond lipid, lignin, 

pectin or their esters 

[31] [33] [34] [35] [36]  

Amide I 1700-

1600 

Amide I due to C=O 

stretching of α-helix protein, 

contribution from C-N 

stretching (C=O stretch 

(80%), C-N stretch (10%), N-

H bending (10%)) 

[33] [34] [37] [38]  

Amide II 1600-

1500 

Amide II due to N-H bending 

and C-N stretching of protein 

(N-H bend (60%), C-N 

[34] 
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Peak name Spectral 

ranges 

Vibration peak assignments References 

stretch (40%)) 

C=O 

aromatic ring 

1517 C=C aromatic ring from 

lignin, C-H bend  

[32] [33] [34] [39]  

C-H bending 1470-

1350 

C-H bending from CH2 and 

CH3  from mainly lipids and 

lignin 

[34] [35] 

C-O 

stretching 

hemicellulose 

and lignin  

1300-

1200 

C-C, C-O skeletal [32] [40]  

C-C ring 

cellulose 

1165 C-C ring from cellulose [34] [40] [41]  

C-O-C 

glycoside 

1103 C-O-C glycoside ether mainly 

hemicellulose 

[36] 

C-C bond of 

cellulose 

1080-

1022 

Stretching vibration of C-OH 

of alcohic groups and 

carboxylic acid, C-C bond of 

the cellulose sugar rings. 

Mainly C-O-C of 

polysaccharides 

[31] [34] [40] [41]  

C-O bonds of 

sucrose 

995-988 endocyclic and exocyclic C-O 

bonds of cello–triose, –

tetraose, and –pentose 

[40] [42] 

   

3000 2950 2900 2850

-0.015

-0.010

-0.005

0.000

0.005

 BIT-non treated

 BIT-treated

N
o

rm
a

liz
e

d
 a

b
s
o

rb
a

n
c
e

Wavenumber

2800

 

1800 1600 1400 1200 1000
-0.02

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

N
o

rm
a

liz
e

d
 a

b
s
o

rb
a

n
c
e

Wavenumber

900

 BIT-non treated

 BIT-treated

 

(a) (b) 

(c) (d) 



International Journal of Agriculture, Environment and Bioresearch 

Vol. 5, No. 04; 2020 

ISSN: 2456-8643 

www.ijaeb.org Page 214 

 

3000 2950 2900 2850

-0.015

-0.010

-0.005

0.000

0.005
 BIT - non treated

 BIT - treated

N
o

rm
a

liz
e

d
 a

b
s
o

rb
a

n
c
e

Wavenumber

2800

 

1800 1600 1400 1200 1000
-0.02

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14
 BIT - non treated

 BIT - treated

N
o

rm
a

liz
e

d
 a

b
s
o

rb
a

n
c
e

Wavenumber

900

 

Figure 2: Representative original average FTIR spectra in KDML 105 rice leaves treated 

with 2 mM BIT and inoculated with Xoo, at 7 DAI, under nethouse conditions. (a), (b) 

Representative original average FTIR spectra in leaves above the inoculated leaf; (c), (d) 

Representative original average FTIR spectra in leaves below the inoculated leaf. Twelve 

spectra per group were preprocessed by taken second derivative spectra after 9 points of 

smoothing and normalized with EMSC over the range. 
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Figure 3: Second derivative average spectra in KDML 105 rice leaves treated with 2 

mM BIT and inoculated with Xoo, at 7 DAI, under nethouse conditions. (a), (b) Second 

derivative average spectra in leaves above the inoculated leaf; (c), (d) Second derivative 

average spectra in leaves below the inoculated leaf. Twelve spectra per group were 

preprocessed by taken second derivative spectra after 9 points of smoothing and 

normalized with EMSC over the range. 

Principal component analysis (PCA) is a common technique for a reduction of sample 

dimensionality. Two-dimensional PCA analyses in above and below rice leaves were presented 

on Fig. 4 and 5, respectively. The blue points of the control were separated from the red points 

representing the BIT-treatment, both in above (Fig. 4a) and below (Fig. 5a) rice leaves 
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Figure 4: PCA analysis in rice leaves above the inoculated leaf, at 7 DAI, under nethouse 

conditions. (a) 2D scatter plot of score from a PCA analysis. (b) Loading plots from a 

PCA analysis in the range of 3000-2800 and 1800-900 cm-1 
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Figure 5: PCA analysis in rice leaves below the inoculated leaf, at 7 DAI, under nethouse 

conditions. (a) 2D scatter plot of score from a PCA analysis. (b) Loading plots from a 

PCA analysis in the range of 3000-2800 and 1800-900 cm-1. 

 

A classification procedure by the cluster analysis was carried out to investigate more information 

about the biochemical differences among the cell wall of rice leaves on induced resistance (Fig. 

6). The cluster analysis is a technique to examine inter-point distances between rice samples as 

well as presents that information in the type of a two-dimensional plot or a dendrogram. The 

dendrogram of above leaves’ spectra displays two main branches which separated approximately 

0.6 unit. The spectra within the above branch are the treatment treated by BIT at a concentration 

of 2 mM. The below branch contains only the diseased control (Fig. 6a). Lastly, the dendrogram 

corresponding to the cell wall spectra from below leaves is displayed in Fig. 6c. At 7 DAI, the 

above branch is separated by 0.4-0.6 unit from the below one and comprised of all spectra of the 

BIT-treated and disease control, respectively. 
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Figure 6: Cluster analysis of FTIR spectra in the range of 3000-2800 and 1800-900 cm-1  

in rice leaves, at 7 DAI, under nethouse conditions. (a): leaves above the inoculated leaf, 

(b): leaves below the inoculated leaf 

 

In addition, to further find out alterations of lignins and pectins in BIT-treated rice leaves, three 

ratios of 1233/1517, 1467/1517, and 1735/1517 cm-1 were specified. At above and below leaves, 

these biochemical ratios of BIT-treated treatment showed that approximately 20-80 percentage of 
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pectins and lignins were significantly accumulated (Fig. 7a and 7b).  
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Figure 7: Relative absorbance ratio of some spectral peaks to the intensitive at 1517 cm-1 in 

KDML 105 rice leaves treated or non treated with BIT 2mM, at 7 DAI, under nethouse 

conditions. Error bars represent standard deviation               from 6 replications. At each ratio 

assessed, values followed by the same letter are not significantly different                       

according to Duncan’s multiple range test at P = 0.05. Ratio of 1233/1517 cm-1 represents 

methoxyphenolic substitution           in aromatic units of lignin. Ratio of 1467/1517 cm-1 is the 

ratio of syringyl to guaiacyl (S/G) of lignin. Ratio of                       1735/ 1517 cm-1 is 

representative of an alteration in pectin synthesis. (a): leaves above the inoculated leaf,                                         

(b): leaves below the inoculated rice leaf 

(a) 

(b) 
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Many available analysis tools can be used for studying induced resistance at cellular and 

subcellular levels as plant histopathological methods, transcriptome, proteome, secondary 

metabolites [43] [44]. Cell wall components can be analyzed by many methods, including 

immunolocalization, GC-MS and histochemical staining [45] [46]. However, these methods 

require labor-intensive in case of treating lots of samples [39]. FTIR is advantageous because the 

strategy to reveal good spectra of each biological sample. FTIR combined with several different 

statistical approaches could be a valuable method to detect, classify and formulate the 

contribution of biological components on the metabolic differences among treated and control 

treatments [22] [32]. However, few studies were carried on using FTIR as a tool to identify 

changes in cellular components on induced resistance, especially in the rice plant.  

Resistance to LB disease in rice leaves largely resulted from the ability of their cells to modify 

the composition and structure of their cell walls. The below rice leaves showed more 

biochemical alterations in the cell walls than above ones. Therefore, below leaves should be used 

for the identification of cell wall changes related to assess the ability of the elicitor on induced 

resistance against pathogens in rice plants. On qualitative analyses, FTIR absorption band area 

values of C-C, C-O skeletal of hemicellulose and lignin, C-O-C glycoside of hemicellulose, and 

C-O-C of polysaccharides could be used as indicators of induced resistance to LB disease in rice 

plants. Wang et al. [39] investigated the composition of wheat cell wall contributing to stem 

lodging resistance by FTIR spectroscopy and concluded that it was not possible to use only one 

peak intensity as a predictor on FTIR spectra between different developmental internodes. 

4. CONCLUSION 

The currently available information on induced resistance in this study suggests that the elicitor 

of BIT has a great potential application on LB management. FTIR spectroscopy offers a new tool 

to characterize biochemical alterations on rice plant responses to LB disease. Emphasis has given 

to the changes of defensive carbohydrates, proteins and lipids in induced rice plants. The above 

rice leaves have dominant defense responses on lipids and proteins, while activities of resistance 

lipids and carbohydrates occur highly on the below rice leaves. The precious information of 

spectral peaks such as C-C, C-O skeletal of hemicellulose and lignin, C-O-C glycoside of 

hemicellulose, and C-O-C of polysaccharides is also used as biomarkers to quickly investigate 

the occurrence of disease resistance in induced rice plants. 
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